368 research outputs found

    Techno-Economic Analysis and Optimal Control of Battery Storage for Frequency Control Services, Applied to the German Market

    Full text link
    Optimal investment in battery energy storage systems, taking into account degradation, sizing and control, is crucial for the deployment of battery storage, of which providing frequency control is one of the major applications. In this paper, we present a holistic, data-driven framework to determine the optimal investment, size and controller of a battery storage system providing frequency control. We optimised the controller towards minimum degradation and electricity costs over its lifetime, while ensuring the delivery of frequency control services compliant with regulatory requirements. We adopted a detailed battery model, considering the dynamics and degradation when exposed to actual frequency data. Further, we used a stochastic optimisation objective while constraining the probability on unavailability to deliver the frequency control service. Through a thorough analysis, we were able to decrease the amount of data needed and thereby decrease the execution time while keeping the approximation error within limits. Using the proposed framework, we performed a techno-economic analysis of a battery providing 1 MW capacity in the German primary frequency control market. Results showed that a battery rated at 1.6 MW, 1.6 MWh has the highest net present value, yet this configuration is only profitable if costs are low enough or in case future frequency control prices do not decline too much. It transpires that calendar ageing drives battery degradation, whereas cycle ageing has less impact.Comment: Submitted to Applied Energ

    Anomaly Detection in Automatic Generation Control Systems Based on Traffic Pattern Analysis and Deep Transfer Learning

    Full text link
    In modern highly interconnected power grids, automatic generation control (AGC) is crucial in maintaining the stability of the power grid. The dependence of the AGC system on the information and communications technology (ICT) system makes it vulnerable to various types of cyber-attacks. Thus, information flow (IF) analysis and anomaly detection became paramount for preventing cyber attackers from driving the cyber-physical power system (CPPS) to instability. In this paper, the ICT network traffic rules in CPPSs are explored and the frequency domain features of the ICT network traffic are extracted, basically for developing a robust learning algorithm that can learn the normal traffic pattern based on the ResNeSt convolutional neural network (CNN). Furthermore, to overcome the problem of insufficient abnormal traffic labeled samples, transfer learning approach is used. In the proposed data-driven-based method the deep learning model is trained by traffic frequency features, which makes our model robust against AGC's parameters uncertainties and modeling nonlinearities.Comment: Editor: Geert Deconinck. 18th European Dependable Computing Conference (EDCC 2022), September 12-15, 2022, Zaragoza, Spain. Fast Abstract Proceedings - EDCC 202

    Resource Aware Run-Time Adaptation Support for Recovery Strategies

    Get PDF
    The selection of recovery strategies is often based only on the types and circumstances of the failures. However, also changes in the environment such as fewer resources at node levels or degradation of quality-of-service should be considered before allocating a new process/task to another host or before taking reconfiguration decisions. In this paper we present why and how resource availability information should be considered for recovery strategies adaptation. Such resource aware run-time adaptation of recovery improves the availability and survivability of a system

    Optimal Power Flow in Four-Wire Distribution Networks: Formulation and Benchmarking

    Full text link
    In recent years, several applications have been proposed in the context of distribution networks. Many of these can be formulated as an optimal power flow problem, a mathematical optimization program which includes a model of the steady-state physics of the electricity network. If the network loading is balanced and the lines are transposed, the network model can be simplified to a single-phase equivalent model. However, these assumptions do not apply to low-voltage distribution networks, so the network model should model the effects of phase unbalance correctly. In many parts of the world, the low-voltage distribution network has four conductors, i.e. three phases and a neutral. This paper develops OPF formulations for such networks, including transformers, shunts and voltage-dependent loads, in two variable spaces, i.e. current-voltage and power-voltage, and compares them for robustness and scalability. A case study across 128 low-voltage networks also quantifies the modelling error introduced by Kron reductions and its impact on the solve time. This work highlights the advantages of formulations in current-voltage variables over power-voltage, for four-wire networks.Comment: 10 pages, submitted to Power Systems Computation Conference 202

    Combined Peak Reduction and Self-Consumption Using Proximal Policy Optimization

    Full text link
    Residential demand response programs aim to activate demand flexibility at the household level. In recent years, reinforcement learning (RL) has gained significant attention for these type of applications. A major challenge of RL algorithms is data efficiency. New RL algorithms, such as proximal policy optimisation (PPO), have tried to increase data efficiency. Additionally, combining RL with transfer learning has been proposed in an effort to mitigate this challenge. In this work, we further improve upon state-of-the-art transfer learning performance by incorporating demand response domain knowledge into the learning pipeline. We evaluate our approach on a demand response use case where peak shaving and self-consumption is incentivised by means of a capacity tariff. We show our adapted version of PPO, combined with transfer learning, reduces cost by 14.51% compared to a regular hysteresis controller and by 6.68% compared to traditional PPO.Comment: Submitted to Elsevier Energy and A
    • …
    corecore